
NW-PaGe Github Organization Policies
Security policies, repo guides and templates for pushing code to the Github Org

Frank Aragona

2023-09-01

Table of contents

1 Introduction 2

2 Security 2
Prevent Credential Leaks with Env Variables . 2

3 Security Guardrails 7
3.1 Pre-commit Hooks . 7
3.2 Pre-Recieve Hooks . 9
3.3 Pushing Private Code to Public Repos . 9

4 Code Reviewers/Github Operations Team 9

5 Licensing 10

6 General License Info 10

7 GNU GPL licenses 10

8 MIT license 10

9 Policies 11
README . 11
CODE_OF_CONDUCT . 11
CONTRIBUTING.md . 11
LICENSE . 11

10 Set Policy Rules at Org Level 12
10.1 Document Requirements with .github Repos . 12

11 Set Templates at the Org Level 13
11.1 Commit Sign-Off Requirement - Github Apps . 16

12 IaC 16

13 Reproducibility 16

14 Data and Code Democratization 16

1

15 Github Codespaces 16
15.1 Open a Codespace . 17
15.2 Devcontainers . 17

16 Virtual Environments 19

17 Github Releases 19

18 Documentation 19

1 Introduction

This document details the policies and guidelines for the Northwest Pathogen Genomics Center
of Excellence (NW-PaGe) Github Organization.

For more information, tutorials and code examples, please see the policies website here
https://nw-page.github.io/standards/.

2 Security

Objectives

• Prevent sensitive information leaks to Github
• Set up guardrails, .gitignore, hooks
• Scrub private repos before they go public

If sensitive information is leaked and commited to the remote repo, then they will stay in the git
history (and will require a lot of effort to remove them from the history). The following cannot
be included in any repo or any local commit!:

Type Examples
File Paths • Network drives

• Shared internal drives
Server Names • ODBC Connections
Credentials • SSH Keys

• Tokens (REDCap, Azure, Github, etc)
• Usernames
• Passwords
• Blob/bucket keys

Identifiable Information • Addresses
• Names
• Any PHI

Prevent Credential Leaks with Env Variables

There are a number of ways to do this. We typically use a yaml file that can be filled out with
personal credentials locally. The file will not be committed to the remote repo

2

Create a private credentials file

The scripts use a .yml file that contains a list of API tokens, server names, and user-
names/passwords specific to each individual user. There are two .yml files. One is a template
(containing no actual passwords..) that exists in the repo and serves as a template so every
individual user can keep up to date with new credential additions. The other is the individual
creds.yml that is in the repo’s .gitignore. This file will never exist in the repo and only exist
locally (in the user’s C drive).

creds.yml details

The .yml file can work with multiple programming languages including R and Python. They
are read in the same way and can be easily adjusted when adding new passwords or using them
as configuration files.

They look like this:

Listing 1 local-credentials.yml

Default is needed to distinguish values.
Leave a blank line (NO SPACES) as the last line in this file or things will break
Quotes aren't necessary, but can be used.
default:

conn_list_wdrs:
Driver: "SQL Server Native Client 11.0"
Server:
Database:
Trusted_connection:
ApplicationIntent:

fulgent:
username: <USERNAME>
password: <PASSWORD>

You can have different variables assigned to unique lists, which allows for easy configuration.
For example, the list starting with default has variables conn_list_wdrs and fulgent. You
can have a different list of variables within the same file like this:

Now there is a test list with its own variables. This lets us switch a set of variables within
our scripts. default applies to the main credentials where test can distinguish which variables
should be test or dev scripts specific. Notice below that you can now call the credentials from
a .yml file into an R or Python script and the actual credentials will never exist in the code
pushed to the repo.

3

Listing 2 local-credentials.yml

Default is needed to distinguish values.
Leave a blank line (NO SPACES) as the last line in this file or things will break
Quotes aren't necessary, but can be used.
default:

conn_list_wdrs:
Driver: "SQL Server Native Client 11.0"
Server:
Database:
Trusted_connection:
ApplicationIntent:

fulgent:
username: <USERNAME>
password: <PASSWORD>

test:
conn_list_wdrs:

Driver: "SQL Server Native Client 11.0"
Server:
Database:
Trusted_connection:
ApplicationIntent:

We can even get more specific and add an if-else statement to specify which credential we
want to select. This can be helpful if we have a CI/CD pipeline and have a script automatically
run on a task scheduler or cron job. We can call the credentials we want in the command line
and have the command line code run in my task scheduler. That way we can use multiple
different versions of the same script and have all of it be automated.

For example, the middle panel uses the commandArgs() to pull any arguments passed to the
script in a shell/command line script. In the right panel, the shell script has production and
test as second arguments. These are passed to the R script as arg[2]. Now we can use arg[2]
in the if-else statement to conditionally select credentials and do it automatically.

4

Listing 3 script-in-repo.R

this script is in the repo, but credentials are hidden
library(yaml)

read in the local credentials yaml file
creds <- yaml::read_yaml("path/to/local-credentials.yml")

pull in the credentials
server_name <- creds$default$conn_list_wdrs$server

Listing 4 script-in-repo.R

args <- commandArgs(TRUE)

this script is in the repo, but credentials are hidden
library(yaml)

read in the local credentials yaml file
creds <- yaml::read_yaml("path/to/local-credentials.yml")

pull in the credentials
if(args[2] == "production"){

server_name <- creds$default$conn_list_wdrs$server
} else if(args[2] == "test"){

server_name <- creds$test$conn_list_wdrs$server
}

Safe Guards - Prevent Accidental Leaks!

Once you have the credentials.yml template in your repo, make sure that nobody on your team
(or anyone with write access..) is able to accidentally push changes to the template. We don’t
want someone’s passwords or API tokens to exist in GitHub.

This link shows how to skip any changes made to the specific file. If someone makes local changes
to the template, the changes will not show in their commit. It is a safe guard.

For all individual users, run this code:

git update-index --skip-worktree creds_TEMPLATE.yml

This will tell your local git to ignore any changes made to creds_TEMPLATE.yml, but also allow
it to exist in the repo (since .gitignore will prevent it from being in the repo)

If you need to update the template file run this:

git update-index --no-skip-worktree creds_TEMPLATE.yml

5

https://stackoverflow.com/a/39776107

Listing 5 shell-trigger-script.sh

Run the production code
$ Rscript -e "source('path/script_in_repo.R');" production

Run the test/dev code
$ Rscript -e "source('path/script_in_repo.R');" test

This will allow changes to the template. So when you need to update the template, use
this code

And to get a list of files that are “skipped”, use this code:

git ls-files -v . | grep ^S

6

3 Security Guardrails

Using a .gitignore file for environmental variables/credentials is an excellent guardrail and
promotes good coding habits, but we may also want additional guardrails such as hooks.

Hooks are processes that run in the background and can prevent code from being pushed if
there is a security flaw. There are two hooks we could use for security; pre-commit hooks and
pre-receive hooks

3.1 Pre-commit Hooks

Pre-commit hooks run a process locally when the user attempts to commit code to a git branch.
Hooks have many uses. Here we can use them as a security guardrail to prevent accidental
credential leaks in committed code.

1. Clone or download the AWS Git Secrets repo from awslabs GitHub

2. Extract zip

3. Open folder and right click install.ps1

a. Run in Power Shell
b. Type Y to give permission

4. CD to a directory where you have the git repository you want to upload, either in Power-
Shell or R studio terminal

Listing 6 PowerShell
PS > cd path/to/repo/root

7

https://github.com/awslabs/git-secrets/blob/master/install.ps1

5. Run git secrets –install

Listing 7 PowerShell
git secrets --install

6. Copy the regex file containing the secret patterns into your folder. – make text file –
discuss with team what all we want to make illegal.

7. Run git secrets –add-provider – cat ./secrets_key

Listing 8 PowerShell
git secrets --add-provider -- cat ./secrets_key

You can also add prohibited patterns like this

Listing 9 PowerShell
add a pattern
git secrets --add '[A-Z0-9]{20}'

add a literal string, the + is escaped
git secrets --add --literal 'foo+bar'

add an allowed pattern
git secrets --add -a 'allowed pattern'

8. Test Git history by running

9. If something gets flagged and you don’t care about your history anymore: Delete .git folder
and reinitialize repository

I would take caution about this point. There might be better ways to clean your git history
if you don’t want to get rid of everything.

10. Test on one of my projects to see if rebasing is a sustainable option

11. Make repo public

12. Will automatically scan on every commit and won’t let it commit unless it’s clean - Create
a few files to show it working

Note

We can’t use the “Non capture group” feature of regex. Meaning we can’t use patterns
like this in our regex: (?:abc) – see https://regexr.com IMPORTANT: Tab separate your
regex expressions. Making new lines caused a bit of chaos and took really long to figure
out. (you can use multiple tabs to separate them more visually)

8

Listing 10 PowerShell
git secrets --scan-history

3.2 Pre-Recieve Hooks

These are still being investigated. They are remote hooks (not local like pre-commit hooks) that
can be deployed throughout the Github organization. They can block certain commits from ever
being pushed to the remote repo. They may make things unnecessarily complicated

3.3 Pushing Private Code to Public Repos

We may wish to take private codes and push them to a public repo. We need to make sure that
the public code doesn’t not contain sensitive or forbidden data/code, so cleaning up the private
repo is important before pushing.

There are a few ways to do this, but the easiest way is to copy the clean private code to the
public repo, that is, copy all the files you want to add publicly but do not copy the .git
folder. If the private repo has a dirty git history we will not want that history in the public repo
because the sensitive data will then be publicly available.

The private repository on the left still contains sensitive information in the git history. The
public repository on the right has a clean git history because we copied only the current clean
files from the private repo and did not attach its git history (which lives in the hidden .git
folder)

4 Code Reviewers/Github Operations Team

With the guardrails above in place there should be few chances that credentials get pushed to
a repo. However accidents may still happen. We want to make sure that anyone who opens up

9

a repo in the Github organization adheres to the rules, has the proper credential/coding set-up,
and installs their local pre-commit hooks properly.

It may be useful to have a team within the organization that helps with repo set-up. The team
would help avoid a scenario where a person opens up a repo without reading this documentation
and understanding the rules (and thus potentially breaking security rules).

This Github Operations Team could also be helpful in managing permissions for members in
the organization. See the video below on how the company Qualcomm manages their Github
organization and how they use a Github Operations Team to guide new members access/repo
development

https://www.youtube.com/embed/1T4HAPBFbb0?si=YRsUYXIxLPhdr41T

5 Licensing

Summary

• Licenses prevent code theft and inappropriate redistribution of code.
• Review common open-source licenses
• License types vary depending on repo goals

6 General License Info

Below is a list of common open-source licenses.

There isn’t a one size fits all license, so thankfully there are a variety of options. Here are two
common ones:

7 GNU GPL licenses

a. These are the strong licenses
b. Prevents someone from taking our code and privatizing it (and making money off of it)
c. Someone can still use our code, they just need to ensure that what they’re doing with it

is open-source
d. “Copyright and license notices must be preserved.”
e. “Contributors provide an express grant of patent rights. When a modified version is used

to provide a service over a network, the complete source code of the modified version must
be made available.”

8 MIT license

a. I think this is the most commonly used one
b. “short and simple permissive license… only requiring preservation of copyright and license

notices”
c. “Licensed works, modifications, and larger works may be distributed under different terms

and without source code.”
d. Someone could basically do whatever they want with the code.

10

https://www.youtube.com/embed/1T4HAPBFbb0?si=YRsUYXIxLPhdr41T
https://www.youtube.com/embed/1T4HAPBFbb0?si=YRsUYXIxLPhdr41T
https://www.youtube.com/embed/1T4HAPBFbb0?si=YRsUYXIxLPhdr41T
https://choosealicense.com/licenses/

e. Nextstain/ncov repo is currently using this

And here are a couple of youtube videos that were helping in explaining licensing

https://www.youtube.com/embed/rbQg9DY_4y0?si=OvU9vLBHX43dTIcA

https://www.youtube.com/embed/ndORMSnb2nw?si=tkUzjwZYWKfrLTEU

9 Policies

Objectives

• Ensure that all repos in the org have the required documents
• Set policy rules at the Organization level
• Repos need to have reproducible code
• Repos need to have documentation

In the Github Organization we may require all repositories to contain certain documents. For
example, we want to make sure that every repo has a CODE OF CONDUCT document that is a
general policy applied throughout the organization.

Here’s a list of required documents:

README

README files are instructions or documentation on how to use your software. It should give a
quick introduction to the repo and instructions on how to install or run the code.

CODE_OF_CONDUCT

A Code of Conduct can let a user know what the rules of the organization are and how any
wrongful behavior will be addressed. The document will provide the “standards for how to
engage in a community”

CONTRIBUTING.md

This file should appear in the issue tab in a repo. It lets a user know how they can contribute
to the project and if they need to sign any forms before contributing. Some larger organizations
require that a person knows what they are contributing to and they must sign a form acknowl-
edging that any software/code contributions to the project will be used and cannot be retracted
by the user. The code submitted may also be used to develop processes but the organization
will not pay the individual contributor (since this is open-source, we only look for open-source
contributions)

LICENSE

These should be and are set at the repo level. There will be many different licenses to choose
from that will depend on the specific repo. More on that here.

11

https://www.youtube.com/embed/rbQg9DY_4y0?si=OvU9vLBHX43dTIcA
https://www.youtube.com/embed/ndORMSnb2nw?si=tkUzjwZYWKfrLTEU
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/adding-a-code-of-conduct-to-your-project
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/adding-a-code-of-conduct-to-your-project

10 Set Policy Rules at Org Level

Policy rules may include requiring certain documents in each repo or requiring that a person
sign every commit.

10.1 Document Requirements with .github Repos

You can set most policy rules and create documents for each repo at the organization level
by using a special .github repo. Dot files and dot folders have special functionality in some
software. For Github, the .github folder defines workflows for things like Github Actions in a
repo. A .github repository on the other hand defines organization level rules and templates.

In order to write and set these policies at the organization level we can put them at the root of
the .github repository and edit them there.

Take a look above. I have the required documents/policies at the root of the .github repo
directory. Now if I open up any given repo in the organization I will find a link to those files:

12

Listing 11 PowerShell

$ tree /f
C:.
� .gitignore
� CODE_OF_CONDUCT.md
� CONTRIBUTING.md
� LICENSE
� README.md
�
����.github
����profile

README.md

If you click on the CODE_OF_CONDUCT link it will take you right to the .github repo and open
the CODE_OF_CONDUCT.md file there:

Now you can set organization level policies from the .github repo and they will automatically
populate in all existing and new repositories unless there are repo specific policies in place. If a
repo already has its own policies they will not be overwritten.

11 Set Templates at the Org Level

Aside from policy documents, you can make templates at the organization level. Two commonly
used templates are issue templates and discussion templates.

13

In the public repos there may be end users that may have limited experience using Github. If
they want to submit an issue or ask a question they get lost. Templates can help them form a
question or idea. Templates can also help standardize how issues and discussions are maintained
throughout the organization.

Structuring the format of issues and discussions can make the author and the end-user’s lives
easier.

In the .github repo I made a folder called .github. This is a special folder that can hold
Github Action workflows and more, as mentioned above.

In the .github folder I have a folder called DISCUSSION_TEMPLATE and another called
ISSUE_TEMPLATE. These are special folders that Github recognizes as discussion and issue
folders that will set templates at the repo (or in this case the org) level.

Listing 12 PowerShell

$ tree /f
C:.
� .gitignore
� CODE_OF_CONDUCT.md
� CONTRIBUTING.md
� LICENSE
� README.md
�
����.github
� � pull_request_template.md
� �
� ����DISCUSSION_TEMPLATE
� � feature-requests.yml
� � q-a.yml
� � show-and-tell.yml
� �
� ����ISSUE_TEMPLATE
� bug_report.yml
� config.yml
� feature_request.yml
�
����profile

README.md

Each Folder has .yml files in it that are basically Github instructions on how to format issues
and discussions.

For example, in the ISSUE_TEMPLATE folder I have a .yml file called bug_report.yml. This file
contains the structure for how someone can report a bug.

Now, when someone clicks on the Issues tab in a repo in this organization they will be met
with the Bug Report template:

Notice that in the template you can create text areas and pre-fill those areas with suggestions.
You can even require that someone fills out those areas before they can submit the issue:

14

Listing 13 bug-report.yml

name: Bug Report
description: File a bug report here
title: "[BUG]: "
labels: ["bug"]
assignees: ["DOH-FAA3303"]
body:

type: markdown
attributes:

value: |
Thanks for taking the time to fill out this bug report
Make sure there aren't any open/closed issues for this topic

Listing 14 bug-report.yml

- type: textarea
id: steps-to-reproduce
attributes:

label: Steps To Reproduce
description: Steps to reproduce the behavior.
placeholder: |

1. Go to '...'
2. Click on '...'
3. Scroll down to '...'
4. See error

validations:
required: true

15

11.1 Commit Sign-Off Requirement - Github Apps

We may want to require authors or reviewers to sign-off on commits to a repo. This is sometimes
established in projects to “ensure that copyrighted code not released under an appropriate free
software (open source) license is not included in the kernel.”

You can install a Github App in the organization and it will be applied to all repos. The DCO
App (Developer Certificate of Origin) is popular and lightweight. To install it in the organization,
click on Configure and it will give you the option to configure it with the organization of choice.

12 IaC

Infrastructure as Code (IaC) can be helpful when managing administration tasks or writing
hooks at the org level.

13 Reproducibility

Objectives

• Data and Code Democratization
• Github Codespaces
• Package reproducibility with virtual environments
• Github Releases
• Documentation

14 Data and Code Democratization

Data and code in our repositories need to be accessible to end users and developers. There should
be no bottlenecks or difficulties with installing software, executing code, finding documentation,
and using test datasets.

The goal is for any user to run code without needing to install anything on their personal machine
and run your code with minimal set up. This may not be possible in every scenario, but there
are tools available in Github to make this possible for the majority of our repos.

15 Github Codespaces

Github Codespaces are virtual machines (VMs) owned by Github that are connected to each
repository. They let a user open the repo in a browser IDE (Integrated Development Environ-
ment) and execute the code in that environment. There is no set up or installation necessary
for them.

The VMs are free for up to 60 hours a month of use and there are more hours added for Github
users with paid memberships. 60 hours/month should be plenty for our purposes. Users are
responsible for their own Codespace, so if they go over the limit they will be responsible for
adding more hours and paying for the service.

16

https://stackoverflow.com/a/1962112
https://stackoverflow.com/a/1962112
https://github.com/apps/dco
https://github.com/apps/dco
https://github.com/features/codespaces

15.1 Open a Codespace

At the root of the repo, click on the Code drop down button

1. On the right there is a tab called Codespaces.
2. Click the + sign and a Codespace will launch

Figure 1: open up a codespace

This will open up a VS Code window in your browser. There are also options to open up a
Jupyter Notebook or Jetbrains IDE (Pycharm). You can also install an Rstudio IDE into the
codespace. It will look something like this - note that the repository is already linked and
checked out into the codespace:

Here you can install most software. You can also customize the Codespace so that whenever
someone opens one in your repo it will come with software pre-installed. More on that in the
devcontainers section

15.2 Devcontainers

Devcontainers are a way to install software into a Codespace so that whenever a user opens up
the Codespace they won’t need to install anything themselves. Making a container can be a little
tricky, so we’ve made Github templates that have devcontainers already made. See templates.
There are R, Python, and general default templates. These containers will install R, Rstudio,
Python, and all the packages in the repo’s virtual environments (venv, conda, pip, renv, etc) so
that the user can run all the code in your repo within a couple minutes.

To set up a devcontainer for yourself;

17

https://docs.github.com/en/codespaces/setting-up-your-project-for-codespaces/adding-a-dev-container-configuration/introduction-to-dev-containers
../tools/templates.qmd

Figure 2: VS Code IDE in Github Codespaces

1. Click on ‘Code > Codespaces > Configure dev container

2. This will make a folder named .devcontainer at the root of your repo
3. In that folder it will make a file named devcontainer.json

18

4. On the right there is a searchable marketplace for software to add to your container

5. Each one comes with instructions on how to add the software to the .devcontainer.json

For more information about Codespaces, see the guides here

16 Virtual Environments

Virtual Environments are another great way to make sure aspects of your repo are reproducible.
They are commonly used to record package versions that the code/project uses. For more on
virtual environments, please see the venv guide.

17 Github Releases

Github Releases save code snapshots, versions, and changelogs of your repo. They are a great
way for end users and developers to use different versions of their code and visualize changes
that happened with each version. Please see the Github Releases guide for more information.

18 Documentation

Your code should be well documented so that end users (and developers) can understand what
code is doing, how to install the software, and the utility of the project.

19

../tools/codespaces.qmd
../tools/renv.qmd
../tools/release.qmd

In general, you should have a README.md file in your repo that explains at least a high level
summary of the code in the repo and what it does, how to install the code, outputs, and how
to contribute to the repo. In addition, it may be a good idea to make a Github Page (a static
website hosted in your repo) that explains the code in more detail. See the documentation guides
here.

Having a Github Page is necessary if you have a package. Consider using software like pkgdown
for R or quartodoc for Python (or other related software that helps link code to your documen-
tation automatically). See more about package documentation here.

20

../tools/how_to.qmd
../tools/how_to.qmd
../tools/pkgdoc.qmd

	Introduction
	Security
	Prevent Credential Leaks with Env Variables

	Security Guardrails
	Pre-commit Hooks
	Pre-Recieve Hooks
	Pushing Private Code to Public Repos

	Code Reviewers/Github Operations Team
	Licensing
	General License Info
	GNU GPL licenses
	MIT license
	Policies
	README
	CODE_OF_CONDUCT
	CONTRIBUTING.md
	LICENSE

	Set Policy Rules at Org Level
	Document Requirements with .github Repos

	Set Templates at the Org Level
	Commit Sign-Off Requirement - Github Apps

	IaC
	Reproducibility
	Data and Code Democratization
	Github Codespaces
	Open a Codespace
	Devcontainers

	Virtual Environments
	Github Releases
	Documentation

